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The stress discontinuities are investigated for the model of a solid described in 

Cl, 23. A maximum principle is formulated for the energy dissipation and it is 
shown that the strain rates vanish under convex flow conditions on the surfacesof 
stress discontinuity. Relationships connecting the stress tensor components on both 

sides of the surface of dis~ntinui~ are derived. 
The discontinuities of the state of stress in a three-dimensional ideal rigidly 

plastic material have been investigated in l3). Relationships on the surfaces of 
discontinuitiy in the state of stress, imposing constraints on the stress tensor dis- 

continuity, are derived for an arbitrary plasticity condition [3], and corollaries 
of these relationships are obtained for the Mlses and Tresca plasticity conditions. 
Stress diswntinuities in the case of the dependence of the plasticity wnditionon 

the first invariant of the stress tensor have been examined in [4], 
Extremum principles in the theory of an incompressible plastic solid have been 

examined by a number of authors (see [S]). The limit load properties for struc- 

tural systems, based on extremum principles. were first exposed in [5. 61 . 
Kinematic and static rheorems concerning the limit load for a compressible 

rigidly plastic solid are proved below on the basis of the formulated maximum 
principle for the energy dissipation rates. 

1. Let us consider an isotropic ~gidly-plastic material whose plasticity condition is 
given as 

61) 

Here o is the first invariant of the stress tensor, &, 8, are, respectively, the second 
and third invariants of the stress deviator, 

The associated flow law for a rigidly plastic solid is (Elj’ are the strain rate tensor 

components) 
%f’ = htPrj, hr > 0, pij = dQt 1 dCrfj 

Let us assume that the stress function and its associated flow law n] have moreover 
been defined for the material under consideration 

f = up (o) - e = 0, e = Vgii CL 2) 

etjn = k7tj* Qfj = W J aoij (1.3) 

Here etj is the plastic strain tensor, rp (o) is some empirical dependence, et j* are 
the strain rate tensor wmponents, and &, Is an undetermined multiplier. 

It has been noted in @. 73 that the loading function (1.2) is interpreted in the stress 
space by a plane of wnstant hydrostatic pressure whose position is determined by the 
magnitude of the volume strain e. 
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The loading plane (1.2) in combination with the flow surface (1.1) froms a piecewise- 
smooth loading surface, at whose angular points the associated plastic fiow law Cl, 23 

Ei j = “fs (vi,j + Vj,i) = Qpij + &&ij 0.4) 
is satisfied. 

Differentiating the loading function (1.2) with respect to time and taking into account 
rhe flow law (1.3). we obtain the expression 

h,=3G?chlt (Lf4 

for the undetermined multiplier J,s . 

2, Let us assume that some surface 5’ exists in a deformable solid with the associ- 
ated flow law (1.4), on which the stress and strain rate tensor components generally un- 
dergo a discontinuity while the displacement velodties are continuous, Let us also con- 
sider the material to be in the plastic state on both sides of the surface S . 

From the continue condition for the contact stresses on the surface S there follows 

[@ij] Vj = (Ufj+ - (sij- ) Vj c 0 (2.1) 

Here the plus and minus superscripts denote the stresses on apposite sides of the surface 
S,and Vi is the unit vector normal to the surface S. 

The geometric compatibility conditions on the surface S are [8] 

I&if1 = ‘1s (OiVj + @jVi) = tb$ij + Agqijl, Wf = [Vi,jl Vj (2.2) 

Let us define a local coordinate system Xi at a point on the surface 5 such that the 
normal vi would coincide with the direction of the X,-axis, Then 

VI = vs = 0, vs == 1 (2.3) 

In the local coordinate system (2.3) there foIlows from (2.1) and (2.2) 

krisl = 0, I&ii1 = Isis] = [Es21 = 0 (2.4) 

We obtain on the surface S from (2.4) 

[Uijl[eijl = 0 (2.5) 
It can be established from the form of the physical relationships (1.4) that the strain 

rate vector is not ortfiogonal to the flow surface for the body model under consideration. 
This circumstance is caused by the capacity of the material to change its volume irre- 
versibly inde~nden~y whether the state of stress satisfies the plasticity rendition (1.1) 
or not, 

in contrast to the deviator 

atjo = e[j - IIs @‘&kk + hqkk) 6ij 

let us agree to call the quantity Qj* = aif - ‘/s&qkk6ij the incomplete strain rate 
deviator. 

In the case of the model under consideration, the Drucker postulate should be formu- 
lated with respect to the incomplete strain rate deviator components 
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Since the vector of the incomplete strain rate deviator is proportional to the vector-gra- 
dient to the flow surface (1.1). As will be shown below, this circumstance affords the 
possibility of formuladng a maximum principle for the energy dissipation rate for plas- 
tic distortion accompanied by “associated” compressibility and irreversible compression 
independently. 

There follows for non-concave flow surfaces from the maximum principle for the ener- 

gy dissipation rate, which is a corollary of the Drucker postulate formulated for the com- 
ponent Eij* 

(oij - d{jO) E+j* > 0 (2.6) 

Here oil are the real values of the stress components corresponding to a given distri- 
. . . 

bution of the quanbaes eij * and Gij" are the components of any possible state of stress 
satisfying the inequality 

cf> (oO, XC, 2;) =G 0 

In the case of strictly convex flow surfaces, the inequality (2.6) can be strengthened 
and written as 

fOij - O;j”) E*j* > 0 (2.7) 

Let us note that rela~onshi~ (2.6) and (2.7) express only the ma~mum principle for 

the rate of energy dissipation, expended in the plastic distortion and the associated vo- 
lume change of the body. 

An additional maximum principle for the dissipation rate relative to the volume flow 
described by (1.3) should be formulated for materials capable of altering their volume 
under hydrostatic compression. We formulate the maximum principle of the energy dis- 

sipation rate under hydrostatic compression as follows. The inequality 

(o - 0”) & > 0 (2.8) 

holds for a fixed value of the volume strain e for any given value of the rate of volume 

change 8 . 
Here o is the real value of the hydrostatic pressure corresponding to a given value of 

E, and a is any possible value of the hydrostatic pressure satisfying the inequality 

f (co, e) < 0 (2.9) 
The inequality (2.8) imposes a constraint on the form of the volume loading function 

(I. 2). 
Indeed, cp (a”) < ‘p (o) follows from (2.9). Since the function cp (cr) is monotonic 

\ 
(from a qualitative picture of the compression), then o - 

G” /t 

o” > 0, and (do I dt > 0) results from (2.8) for a load- 

ing drp I do > 0, i. e, there can be no sections shown 

I 
/ 

i/ 

by the dashes (see Fig. 1) on the curve e = q (6). 

--‘\ 2 
The dashed section I means that an irreversiblevolume 

\ 
strain originates in the body under the mean stress being 

I removed, i. e. any additional mean stress 6~ does negative 

d work 6~ = Me on the strain increment 6e . By analogy 
with theories of plasticity of an incompressible body, we shall 

Fig. 1 call a compressible material with the property 6W < 0 
unstable, A plastic body with the volume loading functions 

shown by the solid lines in Fig. 1 is an example of a stable compressible material for 
which 6w > 0, The dashed section 2 evidently contradicts the law of conservation of 
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energy. 
Therefore, the additional rna~rn~ principle of the energy di~i~tion rate, written as 

(2.8). imposes a stability condition on the properties of a compressible material. 
If the curve e = cp (o) contains no rectilinear sections on which the value of e can 

correspond to various points of the volume loading curve according to the relationship 
dv da 

e=d5dt 

then the inequality (2.8) may be given the form 

(cr - oO) E > 0 (2, IO) 

Using the maximum principle for the energy dissipation rate in the form (2.7). on the 
surface S , we can write 

to&if1 - 3 bllel > 0 (2.11) 

On the surface S we have from (2.5) and (2.11) 

W - o-> Ef + (CT- - o+) a- < 0 (2.12) 

On the other hand, there follows from the maximum principle (2.8) of the energy dis- 
sipation rate 

(o+ - CT) Ef > 0, (cl- - a+) E- > 0 

Comparing (2.12) and (2.13), we conclude that a+ = E- = 0 on the surface S . 
From this and from the relations (2.5) and (2.11) we find 

&& = &$j- z.zz 0 (2.14) 

Therefore, for convex flow surfaces the strain rate tensor components vanish on the stress 
surface of discontinuity within the framework of the body model under consideration. 

From the associated flow law (1.4) and (2.14) there follows 

hi* = J$ = 0 (2.15) 

Multiplying the relationship (2.2) by v j and adding over repeated subscripts and taking 
account of (2.15), we obtain mt = 0. It hence follows that the first derivatives of the 
displacement velocities are continuous on the surface S. 

3. As proposed in 133, the equation of the associated flow law (1.4) should be differ- 
entiated with respect to the coordinates zkt z,, , . ., zt and the Hadamard geometric 
higher order compatibility conditions should be used to obtain constraints on the stress 
discontinuities. 

Priming these operations. we obtain on the surface 5’ 

[‘ill = r/s (aivj + eJ”vl) = [Xpij + Bqijl (3.1) 

cij = Eij, k . . .O’I - + - Vi, Q+ = Ivi,jk.,.ElVjVk . a s Vl 

?t = h, B . . . IVk - f - VI, 0 = $, k . . . iv& . . * VI 

By multiplying (3. I) by vj and subsequently adding over repeated subscripts, we deter- 
mine the quantities 

Taking account of (3.2) the relationships (3.1) become 

(3.2) 
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Only three among the six relationships (3.3) are linearly independent since the system 
(3.3) is converted into a single equation after being multiplied by VtVj . 

The material on both sides of the surface S is in the limit state, hence we can write 

[@ (o, %V &)I = @ (o+, Z*+, Es+) - 0 (a-, z,-, 2,) = 0 (3.4) 
[f (6, e)l = [cp (a)] - [e] = 0 r 

For a compressible medium the continuity condition of the medium is 

dP 1 dt + Pt$t = 0, P = P (a), Qi = at@,,, + &f,,, 
where Q (0) is the density of the medium as a function of the pressure. 

Taking (1.5) into account, we obtain from the continuity equation 

-~p)h~+uj,j=o, r(3)= - +g 

Differentiating this relationship with respect to the coordinate xkz,, . . ., z1 the 

same number of times as in deriving (3.3), and using (3.1) we find on the surface S 

[e {Y (0) - qss}l = hpjJ (3.5) 

Therefore, we have a closed system of nine equations (2. l), (3. l), (3.4) and (3.5) for 
the determination of oij-, X-, 8-, e-. In the canonical coordinate system (2.3) this 

system of equations becomes 

[CD (u, z,, X,)1 = 0, If (CT, e)l = 0 
hl = 0, hp11 + eq,,1 = [xp,,l = hp,, + eq,,1 = 0 
[e {Y (4 - ha) 1 = [XP331 

Let us note that the discussion presented is valid also for plastic bodies whose flow 

conditions are convex and independent of the hydrostatic part of the stress. In this case 
we set Xpkk = 0 in (3.3). 

4. We consider a plastic medium whose limit state is described by the function 

4 (Sij) = k2, Sij = ~ij - Udij, k = CO& (4.1) 

and the volume flow by (1.3). 
Let the medium of volume o under consideration be bounded by the surface x = 

Zf + 2,. where external loads pi = pi0 are given on the part Zf of the body surface 
while the displacements velocities vi = Vi0 are given on the remaining part Z, . For 
simplicity, let us still assume that the velocity fields zi are continuous in the whole body 
volume. Then the equation of the rates of virtual work for real stress and velocity fields 

is written as 
(4.2) 

in the case of quasistatic flow of a compressible medium. 
Let us consider an arbitrary, kinematically admissible, velocity field vi’ satisfying the 

continuity condition 
dp/dt + pv& = 0, p = ii (‘J) (4.3) 

and kinematic constraints on the part of the surface Z,. 
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components of the strain rate deviator F+*’ and the volume change rate e’ will carre- 
spond to the velocit/ field vi’ . According to the associated flow law, the stress deviator 

Sij* which does not generally satisfy the equilibrium equations will correspond the the 
components of Eij*’ . 

The kinematically admissible magnitude of the volume change rate e’ determines 

the relative change in volume of the medium within the time t [9] 

e’ z s F.’ dz 

0 

This last integral is computed along the motion trajectories of the material particles. 
In the case of homogeneous simple strain, the quantity e’ can be determined as the sum 
of the principal logarithmic strains [9] 

Xl 
e’ = In m + In xzo A+hl$+ 

Here Xi0 (i = 1, 2, 3) are the initial lengths of the segments 

coordinates determined for known vi’ (zi, t) irorn the relations 

dXi/dt= vi 

By integrating (4.3) we obtain the relation [9] 

P = PO exp (- e’), PO = P I f=O 

(4.4) 

Xj which are the Lagrange 

(4.5) 

(4.6) 

Determining the quantities Xi from (4.5) and substituting the value of the volume 

strain c’ computed by means of (4.4) into the continuity equation (4.6), we find the 

magnitude of the hydrostatic pressure 0 *corresponding to the velocity field vi’ 

u* = 3-r [p. exp (- c’)] 

Here R-r is the inverse function relative to ‘i . 
The hydrostatic pressure u* thus determined does not generally satisfy the equilibrium 

equations in the general strain case. 

Let us note that a method of determining the hydrostatic pressure matched with a dis- 
continuous kinematically-admissible velocity field was examined in [lo] for the plane 

strain case. 
We consider the case of loading a body when the loads pi” on the part of the surface 

Zf grow in proportion to a parameter n, i.e. pi” = nqi” (qi” is some fixed load distri- 
bution on Zf). Let n, denote the value of the parameter n for which the llrnlt state of 

the body is achieved. Moreover, let us assume that vi’ = 0 on the part of the body sur- 
face Z,. 

The surface loads pi* = nb qi” (nk is the kinematic component) correspond to the 
stresses oij* = Sij’ + 0*6ij corresponding to the kinematically admissible velocities 
Vi’ . For the kinematically admissible velocity field vi’, Eq, (4.2) is also valid, rhere- 
fore noI = (Sij$+ 3&)d~, I = 5 qi”vt’dZ 

s 
0 =f 

(4.7) 

where Sij, u are components of real stress state imparting the limit state of the body. 
Equation (4.2) is also satisfied in the case of the fields Sij*, u*, eij*‘, e’, v[ and has the 
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form 
fi,$ = 

s 
(L+?;; + 3a*a’)’ da (4.8) 

0 

Subtracting (4.7) from 14_ 8). we find 

(‘l, - no) 1 = 
s 

[(S;j - S<j) 8;; + 3 (O* - 5) a’] &,, (4.9) 
0 

For the plasticity condition (4. l), the inequality (2.6) is written as 

(Sij - St) 8; 2 0, 8; = e$j - “6ij (4.10) 

In conformity with the inequalities (2. 8) and (4.10) the right side of (4.9) is non-ne- 

gative. Then taking account of the posltivity of the power of the given loads on Zf, 

we find no d wr i.e. for a compressible plastic material with arbitrary convex flow 
SUrfaCe, the coefficient of the ultimate load nn: cannot be greater than the kinetic coef- 

ficient nk. 

Let us note that in the case of the presence of discontinuous velocity fields the addi- 
tional part of the power dissipation on the smfaces of velocity vector discontinuity should 

be taken into account in (4.2). The power dissipation on surfaces of velocity discontinu- 

ity was determined ln [ 111 for a comIuesslble Mlses material. The proof of the kinema- 
tic theorem in this case is no different, in principle, from that presented above and the 

quantity n,,. has the form 

n 
k 

= f [\ (kH’ + 35*~‘) do + 2 \ (7’ + a* [vi]) dS 
I 

, H’ = (2$31e;;)‘/* 

0 i Si 

r’ = k/JfF{3 (v;: - ,‘)a + 3 (z$ - ZJ;-)” + 4 (~2 - u;-)~}“‘, ]vz’] = vL’+- vi- 

Here Si(i= 1, 2, . ..) is the surface of velocity discontinuity, (z, y, Z) is a local 

coordinate system on the surface s’k, where the z-axis is directed along the normal to 

Sk+ and Vi’* are values of the velocity on different sides of the surface of discontinuity. 
We examine a statically possible stress field Oij’, which satisfies the relationships 

61j, j = 0, 4 (S;j) < K2, e - ‘p (a’) Z 9 

and the boundary conditions on Zf : p; = nsqio ( n, is the static coefficient). For the ac- 

tual velocity distribution and the statically possible field of stress we have from (4.2) 

12J rz: 
s 

&L$ f 35’E) &I (4.11) 

0 

Using the inequalities (2.8) and (4.10). we find ns < n, from (4.2) and (4. ll), i.e. 
the ultimate load coeffcient n, cannot be less than the static coefficient ng for a rigidly 
plastic medium irreversibly compressible because of the effect of hydrostatic pressure. 
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The following problems on determining the stresses around rectilinear longitudi- 
nal shear cracks are examined by the method of singular integral equations: a 
system of arbitrarily arranged cracks in an unbounded or semi-bounded solid, a 
periodic system of cracks of arbitrary orientation in infinite and semi-infinite 

spaces. 
The simply-connected domain is usually considered in the investigations [l- 

91 devoted to a study of the stress distribution around longitudinal shear cracks, 
when the solution of the problem can be obtained by conformal mapping. If the 
domain occupied by the solid is multiconnected, then the existing solutions are 

limited to comparatively simple cases of collinear [ 1 - 31 or parallel [ 2- 5, 8, 

91 cracks. 
The problem of determining the stresses in an infinite solid containing arbit- 

rarily arranged rectilinear longitudinal shear cracks is reduced below to a system 
of integral equations in the general case. This permits the solution of a number 
of new problems of mathematical theory of cracks. The appropriate problems of 


